
Stepping Stones: A Progressive Training Strategy
for Audio-Visual Semantic Segmentation

(Supplementary Material)

Juncheng Ma1 , Peiwen Sun2 , Yaoting Wang3 , and Di HuB3,4

1 University of Chinese Academy of Sciences
majuncheng21@mails.ucas.ac.cn

2 Beijing University of Posts and Telecommunications
sunpeiwen@bupt.edu.cn

3 Gaoling School of Artificial Intelligence, Renmin University of China, China
yaoting.wang@outlook.com

dihu@ruc.edu.cn
4 Engineering Research Center of Next-Generation Search and Recommendation

1 More Qualitative Comparison

In this section, we conduct a more comprehensive qualitative comparison across
all three subtasks, contrasting our approach with AVSbench [6] and AVSeg-
former [2]. For the S4 task, illustrated in Fig. A1, all three methods demonstrate
satisfactory performance, yet ours exhibits slight superiority in terms of seg-
mentation accuracy and audio-visual alignment. For the MS3 task, depicted in
Fig. A2, our method notably surpasses other approaches in sound source deter-
mination and segmentation accuracy. Finally, for the AVSS task, as depicted in
Fig. A3, our approach remarkably outperforms prior methods in both establish-
ing audio-visual correspondence and semantic comprehension.

2 Generalization of Stepping Stones Training Strategy

To further validate the generalization of our approach, we present some results to
illustrate the enhancement on AVSBench and AVSegformer through the Stepping
Stones strategy. As depicted in Figs. B4 and B5, the application of the Stepping
Stones strategy yields significant improvements on both audio-visual alignment
and semantic comprehension.

In the main paper, we simulated three levels of accuracy for the first-stage
results during experiments to validate the generalization of Stepping Stones.
These levels, termed low, high and oracle, correspond to first-stage results with
IoU values of 77.10%, 83.65%, and 100% (averaged across S4, MS3, and V2
subset), respectively. Figs. B4 and B5 present results obtained at high level.
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Fig.A1: Qualitative comparison of the S4 task.

Fig.A2: Qualitative comparison of the MS3 task.
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Fig.A3: Qualitative comparison of the AVSS task. Ours donates the AAVS model
with Stepping Stones strategy.

Fig. B4: Effectiveness of the Stepping Stones strategy on AVSegformer. “SS” denotes
the abbreviation for Stepping Stones here.
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Fig. B5: Effectiveness of the Stepping Stones strategy on AVSBench. “SS” denotes the
abbreviation for Stepping Stones here.

3 Effectiveness of Stepping Stones Training Strategy

We present a comparison of results obtained before and after applying Stepping
Stones strategy to the AAVS model to further validate its effectiveness, as de-
picted in Fig. C6. Notably, in the second column, despite the inaccurate sound
source localization information provided by the first-stage results, the robustness
of the second-stage model enables accurate final prediction of semantic mask.
Consistent with the setting of ablation experiments, we utilize the first-stage
results inferred from the trained AAVS model.

Fig. C6: Effectiveness of the Stepping Stones strategy on AAVS. “SS” denotes the
abbreviation for Stepping Stones here.
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4 Comparison with CAVP [1]

In a contemporaneous study, Chen, et al. [1] introduced a novel dataset for audio-
visual segmentation and proposed an informative sample mining method based
on contrastive learning. Upon examining their code in the official GitHub repos-
itory, we observed significant differences between their calculations of evaluation
metrics (mIoU, F-score) during testing and our methods. For mIoU, CAVP ac-
cumulates the intersection and union for each categories across the test set, then
divides and averages along the categories. In contrast, following the protocols of
AVSBench [6], CATR [3], AVSegformer [2], GAVS [4], and MUTR [5], we accu-
mulate the IoU for each category across the test set, divide by the total number
of valid categories, and then average along the categories. These two calculation
methods result in significant differences in mIoU and F-score.

Fig.D7: Qualitative comparison with CAVP [1].

Table D1: Quantitative comparison on S4 and MS3 subtask.

Method S4 MS3
mIoU F-score mIoU∗ F-score∗ mIoU F-score mIoU∗ F-score∗

CAVP [1] 60.5 70.9 87.2 93.4 43.5 51.1 67.6 77.8
Ours 83.2 91.3 91.4 95.5 67.3 77.6 78.4 86.0

To ensure a fair comparison, we conducted reproduction experiments using
the official code of CAVP, and the results were consistent with those reported
in the paper. Then, we compared the performance of CAVP and our method

https://github.com/cyh-0/CAVP
https://github.com/cyh-0/CAVP
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Table D2: Quantitative comparison on AVSS subtask.

Method mIoU F-score mIoU∗ F-score∗

CAVP [1] 35.2 39.3 50.8 64.3
Ours 48.5 53.2 60.5 70.9

Table E3: Ablation Experiment of initialization of attention mask. “Actual” refers to
pseudo labels inferred from the trained AAVS, while “Oracle” denotes the utilization
of ground truth binary labels.

Method Actual Oracle

mIoU F-score mIoU F-score

w/. Audio Initialization 43.4 48.3 51.2 56.2
Origin Initialization 41.8 47.2 - -

on three sub-tasks using the above two kinds of calculation methods, as shown
in Tabs. D1 and D2. Among them, mIoU and F-score represent the evaluation
metrics used in our paper, while mIoU∗ and F-score∗ represent the evaluation
metrics used in CAVP. It is evident that regardless of calculation methods, our
method consistently outperforms CAVP. Further quantitative comparison can
be seen in Fig. D7.

5 More Ablation Study

The results of the experiments on the initialization method of masked attention
in the transformer decoder are presented in Tab. E3.
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