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Abstract 

In this paper, we focus on the Audio-Visual Question 

Answering (AVQA) task, which aims to answer questions 

regarding different visual objects, sounds, and their as- 

sociations in videos. The problem requires comprehen- 

sive multimodal understanding and spatio-temporal rea- 

soning over audio-visual scenes. To benchmark this task 

and facilitate our study, we introduce a large-scale MUSIC- 

AVQA dataset, which contains more than 45K question- 

answer pairs covering 33 different question templates span- 

ning over different modalities and question types. We de- 

velop several baselines and introduce a spatio-temporal 

grounded audio-visual network for the AVQA problem. Our 

results demonstrate that AVQA benefits from multisensory 

perception and our model outperforms recent A-, V-, and 

AVQA approaches. We believe that our built dataset has 

the potential to serve as testbed for evaluating and pro- 

moting progress in audio-visual scene understanding and 

spatio-temporal reasoning. Code and dataset: http://gewu- 

lab.github.io/MUSIC-AVQA/ 

1. Introduction 

We are surrounded by audio and visual messages in daily 

life, and both modalities jointly improve our ability in scene 

perception and understanding [19]. For instance, imagine 

that we are in a concert, watching the performance and lis- 

tening to the music at the same time contribute to better 

enjoyment of the show. Inspired by this, how to make ma- 

chines integrate multimodal information, especially the nat- 

ural modality such as the audio and visual ones, to achieve 

considerable scene perception and understanding ability as 

humans is an interesting and valuable topic. 

In recent years, we have seen significant progress in 

sounding object perception [6,22,37,52], audio scene anal- 

ysis [7, 10, 13, 20, 21, 51, 59], audio-visual scene pars- 

ing [42, 47], and content description [24, 40, 50] towards 

audio-visual scene understanding. Although these methods
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Figure 1. Audio-visual question answering requires auditory and 

visual modalities for multimodal scene understanding and spatio- 

temporal reasoning. For example, when we encounter a complex 

musical performance scene involving multiple sounding and non- 

sounding instruments above, it is difficult to analyze the sound 

first term in the question by VQA model that only considers visual 

modality. While if we only consider the AQA model with mono 

sound, the left or right position is also hard to be recognized. How- 

ever, we can see that using both auditory and visual modalities can 

answer this question effortlessly. 

associate objects or sound events across audio and visual 

views, most of them remain limited ability for cross-modal 

reasoning, under complex audio-visual scenarios. In con- 

trast, humans are capable of performing multi-step spatial 

and temporal reasoning over multimodal contexts to solve 

complex tasks, such as answering an audio-visual question, 

but it is quite challenging for machines. Existing methods 

such as Visual Question Answering (VQA) [3] and Audio 

Question Answering (AQA) [9] only focus on single modal- 

ity, which cannot reason well in a more natural scenario 

with both audio and visual modalities. For instance, as 

shown in Fig. 1, when answering the audio-visual question 

“ Which clarinet makes the sound first " for this instrumental 

ensemble, it requires to locate sounding objects “ clarinet " 

in the audio-visual scenario and focus on the “ first " sound- 

ing “ clarinet " in the timeline. To answer the question cor-

http://gewu-lab.github.io/MUSIC-AVQA/
http://gewu-lab.github.io/MUSIC-AVQA/


 

rectly, both effective audio-visual scene understanding and 

spatio-temporal reasoning are essentially desired. 

In this work, we focus on the Audio-Visual Question An- 

swering (AVQA) task, which aims to answer questions re- 

garding visual objects, sounds and their association. To this 

end, a computational model is essentially required to equip 

with effective multimodal understanding and reasoning 

ability on rich dynamic audio-visual scenes. To facilitate 

the aforementioned research, we built a large-scale Spatio- 

Temporal Music AVQA (MUSIC-AVQA) dataset. Con- 

sidering that musical performance is a typical multimodal 

scene consisting of abundant audio and visual components 

as well as their interaction, it is appropriate to be utilized 

for the exploration of effective audio-visual scene under- 

standing and reasoning. So we collected amounts of user- 

uploaded videos of musical performance from YouTube, 

and videos in the built dataset consist of solo, ensemble 

of the same instruments and ensemble of different instru- 

ments. It contains 9,288 videos covering 22 instruments, 

with a total duration of over 150 hours. 45,867 question- 

answer pairs are generated by human crowd-sourcing, with 

an average of about 5 QA pairs per video. The questions 

are derived from 33 templates and asked regarding content 

from different modalities at space and time, which are suit- 

able to explore fine-grained scene understanding and spatio- 

temporal reasoning in the audio-visual context. 

To solve the above AVQA task, we consider this prob- 

lem from the spatial and temporal grounding perspective, 

respectively. Firstly, the sound and the location of its vi- 

sual source is deemed to reflect the spatial association be- 

tween audio and visual modality, which could help to de- 

compose the complex scenario into concrete audio-visual 

association. Hence, we propose a spatial grounding module 

to model such cross-modal association through attention- 

based sound source localization. Secondly, since the audio- 

visual scene changes over time dynamically, it is critical to 

capture and highlight the key timestamps that are closely re- 

lated to the question. Accordingly, the temporal grounding 

module that uses question features as queries is proposed 

to attend crucial temporal segments for encoding question- 

aware audio and visual embeddings effectively. Finally, the 

above spatial-aware and temporal-aware audio-visual fea- 

tures are fused to obtain a joint representation for Question 

Answering. As an open-ended problem, the correct answers 

to questions can be predicted by choosing words from a pre- 

defined answer vocabulary. Our results indicate that audio- 

visual QA benefits from effective audio-visual scene under- 

standing and spatio-temporal reasoning, and our model out- 

performs recent A-, V-, and AVQA approaches. 

To summarize, our contributions are threefold: 

• We build the large-scale MUSIC-AVQA dataset of 

musical performance, which contains more than 9K 

videos annotated by over 45K QA pairs, spanning over 

different modal scenes. 

• A spatio-temporal grounding model is proposed to 

solve the fine-grained scene understanding and reason- 

ing over audio and visual modalities. 

• Extensive experiments show that AVQA benefits from 

multisensory perception and our model is superior to 

recent QA approaches especially on the questions that 

measures spatio-temporal reasoning ability of models. 

2. Related Work 

2.1. Audio-Visual Learning 

By integrating the audio and visual information in mul- 

timodal scenes, it is expected to explore more sufficient 

scene information and overcome the limited perception 

in single modality. Recently, there have been several 

works utilizing audio and visual modality to facilitate mul- 

timodal scene understanding in different perspectives, such 

as sound source localization [23, 31, 34, 37, 48] and sepa- 

ration [10, 13, 41, 59, 61, 63], audio inpainting [62], event 

localization [4, 43, 64], action recognition [14], video pars- 

ing [42, 47], captioning [24, 40, 50], and dialog [1, 66]. 

Regarding previous works on sound source localiza- 

tion and separation, the former mainly focuses on locat- 

ing sounds in a visual context [34, 37], while the latter 

mainly centers around separating different sounds from cor- 

responding visual objects [12, 59]. These works have made 

great progress for the interaction of audio and visual fea- 

tures, but they essentially focus on the perception of audio- 

visual objects. Further, some researchers propose to inte- 

grate audio and visual messages to explore semantic events 

and behaviors in multimodal scenes [14, 43]. As expected, 

these works have shown considerable performance by uti- 

lizing more sufficient information from audio and visual 

cues. Based on which, others took a step forward to parse 

the audio-visual scenes [42], describe content [24], and 

leverage contextual cues for dialog [1, 66]. 

Apart from the above methods that facilitate scene un- 

derstanding by excavating and analyzing different modal- 

ities, a unified multimodal model should also be able to 

reason their spatio-temporal correlation. In this work, dif- 

ferent from the previous methods, besides the fine-grained 

scene understanding, we further propose to explore spatio- 

temporal reasoning in the audio-visual context. 

2.2. Question Answering 

In the past years, several question answering tasks have 

been proposed but in different modalities, including text 

question answering [35, 44], visual question answering [3, 

25, 53, 57], audio question answering [9, 58], etc. 

VQA [3, 17, 32] aims to generate natural language an- 

swers about specific visual content. The early research in 

VQA focused on simple visual understanding in static im- 

ages but ignored the spatial and semantic relationships be-
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Table 1. Comparison with other video QA datasets. Our MUSIC-AVQA dataset focuses on the interaction between visual objects and 

their produced sounds, offering QA pairs that cover audio, visual and audio-visual questions, which is more comprehensive than other 

datasets. The collected videos in MUSIC-AVQA can facilitate audio-visual understanding in terms of spatial and temporal associations. 

tween visual content, hence they are difficult to achieve ef- 

fective visual reasoning in complex scene. To overcome 

this shortcoming, Johnson et al. [26] released the simu- 

lated CLEVR dataset and expected the model to answer 

reasoning-oriented visual questions. Since then, more at- 

tentions are paid to the spatial and semantic relational rea- 

soning of visual objects in VQA [2,11,33]. Recently, some 

methods proposed to improve the spatial-temporal reason- 

ing ability of computational model further, by answering 

question in the video context [8, 27, 30, 49, 54, 60]. Apart 

from the visual information, some other modality informa- 

tion in video, such as subtitles [29] or scripts [39], are used 

for advancing the understanding of video content. Simi- 

larly, some external knowledge [15,46] and situations [5,45] 

are also utilized to achieve better content understanding. 

In addition to the visual modality-based QA, some re- 

searchers also proposed to answer questions in other modal- 

ities, such as audio [1, 9, 36, 56] and speech [58]. Pano- 

AVQA [56] is a concurrent work to ours, also aiming at 

audio-visual question answering. But the QA-pairs within 

the dataset only covers relatively simple audio-visual asso- 

ciation, such as existential or location questions. In con- 

trast, our built MUSIC-AVQA dataset can facilitate study 

on spatio-temporal reasoning for dynamic and long-term 

audio-visual scenes. Meanwhile, the proposed method pro- 

vides new perspectives in modeling such complex scenario 

and obtains noticeable results. 

3. The MUSIC-AVQA Dataset 

3.1. Overview 

To explore scene understanding and spatio-temporal rea- 

soning over audio and visual modalities, we build a large- 

scale audio-visual dataset, MUSIC-AVQA, which focuses 

on question-answering task. As noted above, high-quality 

datasets are of considerable value for AVQA research. 

Hence, considering that musical performance is a typical 

multimodal scene consisting of abundant audio and visual 

components as well as their interaction, we choose to man- 

ually collect amounts of musical performance videos from 

YouTube. Specifically, 22 kinds of instruments, such as gui- 

tar, cello, and xylophone, are selected and 9 audio-visual 

question types are accordingly designed, which cover three 

different scenarios, i.e. , audio, visual and audio-visual. 

As shown in Tab. 1, compared to existing related 

datasets, our released MUSIC-AVQA dataset has the 

following advantages: 1) Our dataset offers QA pairs 

that covering audio question, visual question and audio- 

visual question, which is more comprehensive than other 

datasets. Most video QA datasets, like ActivityNet- 

QA [54], TVQA [29], only contain visual question and pro- 

vide limited possibility to explore audio-visual correlation. 

Although existing AVQA datasets, such as AVSD [1] and 

Pano-AVQA [56], also offer audio-visual QA pairs, they 

focus on relatively simple audio-visual correlation that only 

needs spatial reasoning, such as existential or location ques- 

tions. As a concurrent work of Pano-AVQA, our dataset 

is more comprehensive and much longer than it, which in- 

cludes more spatial and temporal related question, such as 

existential , location , counting , comparative and temporal . 

2) Our dataset consists of musical performance scenes that 

contains enriching audio-visual components, which con- 

tributes to better investigation of audio-visual interaction, 

and it can avoid the noise problem in the scene to some 

extent, where the visual objects and sounds are not re- 

lated. The audio information in most released datasets ( e.g ., 

ActivityNet-QA [54] and AVSD [1]) is usually accompa- 

nied by severe noise that sound and visual objects in the 

video do not match ( e.g . background music), which makes 

them difficult to explore the association between different 

modalities. In addition, the TVQA [29] dataset contains 

both visual and audio modality, but its sound mainly con- 

sists of human speech, and only the corresponding subti- 

tle is used during QA pairs construction. In the follow- 

ings, we provide detailed descriptions about the procedure 

of video collection, QA pairs annotation and collection, as 

well as the related statistical analysis about our MUSIC- 

AVQA dataset. 

3.2. Video Collection 

Real Videos. We collect 7,422 real videos of musical per- 

formance from YouTube. Among these videos, three kinds 

of musical performance are covered to ensure the diversity, 

complexity and dynamic of audio-visual scenes: solo, en- 

semble of the same instrument (ESIT) and ensemble of dif- 

ferent instruments (EDIT). In order to control the quantity 

balance of different instrument types, we design the fol- 

lowing rules: 1) Solo : about 50 solo videos are collected 

per instrument; 2) ESIT : about 100 videos are collected 

per ESIT type; 3) EDIT : each instrument is required to 

combine with every other instruments. For the collected



(g) Distribution of collected questions by their first four words.(f) Distribution of question templates.

(a) Real and synthetic videos (b) Different scene types (c) Modalities QA pairs (d) Audio-visual questions (e) Question Formulas

Is 
thi

s s
ou

nd
 fro

m th
e i

nst
rum

en
t in

 th
e v

ide
o?

Is 
the

 <Obje
ct>

 in
 th

e v
ide

o a
lw

ay
s p

lay
ing

?

Is 
the

re 
a v

oic
eo

ve
r?

How
 m

an
y i

nst
rum

en
ts 

are
 so

un
din

g i
n t

he
 vi

de
o?

How
 m

an
y t

yp
es 

of 
musi

cal
 in

str
um

en
ts s

ou
nd

 in
...

How
 m

an
y i

nst
rum

en
ts 

in 
the

 vi
de

o d
id 

no
t so

un
d..

.

How
 m

an
y s

ou
nd

ing
 <Obje

ct>
 in

 th
e v

ide
o？

W
he

re 
is t

he
 <LL> in

str
um

en
t?

Is 
the

 <FL> so
un

d c
om

ing
 fro

m th
e <

LR> in
str

um
en

t?

W
hic

h i
s t

he
 m

usi
cal

 in
str

um
en

t th
at 

sou
nd

s a
t th

e..
.

W
ha

t is
 th

e <
LR> in

str
um

en
t o

f th
e <

FL> so
un

din
g..

.

Is 
the

 in
str

um
en

t o
n t

he
 <LR> m

ore
 rh

yth
mic 

tha
n..

.

Is 
the

 in
str

um
en

t o
n t

he
 <LR> lo

ud
er 

tha
n t

he
...

Is 
the

 <Obje
ct>

 on
 th

e <
LR> m

ore
 rh

yth
mic 

tha
n..

.

Is 
the

 <Obje
ct>

 on
 th

e <
LR> lo

ud
er 

tha
n t

he
...

W
he

re 
is t

he
 <FL> so

un
din

g i
nst

rum
en

t?

W
hic

h <
Obje

ct>
 m

ak
es 

the
 so

un
d <

FL>?

W
ha

t is
 th

e <
TH> in

str
um

en
t th

at 
co

mes 
in?

W
hic

h i
nst

rum
en

t m
ak

es 
sou

nd
s <

BA> th
e <

Obje
ct>

?

Is 
the

re 
a <

Obje
ct>

 in
 th

e e
nti

re 
vid

eo
?

Are 
the

re 
<Obje

ct>
 an

d <
Obje

ct>
 in

str
um

en
ts..

.

How
 m

an
y t

yp
es 

of 
musi

cal
 in

str
um

en
ts a

pp
ear

ed
...

How
 m

an
y <

Obje
ct>

 ar
e i

n t
he

 en
tire

 vi
de

o?

W
he

re 
is t

he
 pe

rfo
rm

an
ce?

W
ha

t is
 th

e i
nst

rum
en

t o
n t

he
 <LR> of

 <Obje
ct>

?

W
ha

t k
ind

 of
 m

usi
cal

 in
str

um
en

t is
 it?

W
ha

t k
ind

 of
 in

str
um

en
t is

 th
e <

LRer>
 in

str
um

en
t?

Is 
the

re 
a <

Obje
ct>

 so
un

d?

Are 
the

re 
<Obje

ct>
 an

d <
Obje

ct>
 so

un
d?

How
 m

an
y m

usi
cal

 in
str

um
en

ts w
ere

 he
ard

 th
rou

gh
ou

t...

Is 
the

 <Obje
ct>

 m
ore

 rh
yth

mic 
tha

n t
he

 <Obje
ct>

?

Is 
the

 <Obje
ct>

 lo
ud

er 
tha

n t
he

 <Obje
ct>

?

Is 
the

 <Obje
ct>

 pl
ay

ing
 lo

ng
er 

tha
n t

he
 <Obje

ct>
?

0

500

1000

1500

2000

2500
Multi-modal scene

 Existential
 Counting
 Location
 Comparative
 Temporal
 Counting
 Location
 Counting
 Comparative

N
um

be
rs

Audio-Visual Visual Audio

Question type

Question Templates

16.7%

26.6% 56.7%
Audio-VisualVisual

Audio

79.9%

20.1%
Synthetic

Real
24.1%

16.9%

20.7%

19.7%

18.6%
Temporal

Comparative

Existential

Counting

Location

13.5%

71.7%

14.8%

Solo Other 
ensemble

Duet

 

Figure 2. Illustrations of our MUSIC-AVQA dataset statistics. (a-d) statistical analysis of the videos and QA pairs. (e) Question 

formulas. (f) Distribution of question templates, where the dark color indicates the number of QA pairs generated from real videos while 

the light-colored area on the upper part of each bar means that from synthetic videos. (g) Distribution of first n-grams in questions. Our 

QA-pairs need fine-grained scene understanding and spatio-temporal reasoning over audio and visual modalities to be solved. For example, 

existential and location questions require spatial reasoning, and temporal questions require temporal reasoning. Best viewed in color. 

untrimmed videos, we randomly cut them into one minute 

long for efficiency purpose. Moreover, human verification 

is performed to ensure whether the cut videos contain mu- 

sical performance scenes. 

Synthetic Videos. There are many solo and duet perfor- 

mance in real-world videos that contain limited visual ob- 

jects and sounds. To further facilitate study on understand- 

ing and reasoning, we synthesize more challenging videos 

in which multiple visual objects and sounds are appeared 

with different associations. 

3.3. QA Pairs Annotation and Collection 

For the collected musical performance videos, the QA 

annotation is performed in three steps: question design, 

question collection and answer collection. 

Questions Design . In order to better explore the contribu- 

tion of the spatio-temporal correlation between visual and 

audio components to multimodal scene understanding, 33 

question templates that cover 9 question types are proposed 

under different modality scenes. Concretely, to prevent 

from asking multiple simple questions and guarantee the 

diversity of questions, inspired by the mechanism of ques- 

tion templates in building VQA dataset [26, 38], we design 

several question templates before annotating the collected 

videos, as shown in Fig. 2(d). 

Questions Collection . We design an audio-visual question 

answering labeling system to collect questions. To ensure 

the diversity and balance of different question templates, we 

set up the following rules for the labeling system: 1) the 

same question template in a video can only be annotated by 

the same annotator once; 2) each video needs to be watched 

for more than 30-seconds before it can be annotated; 3) the 

question templates that have been annotated will no longer 

be displayed to the subsequent annotators; 4) each video has 

to be annotated for 5 times. With these rules, we collect the 

questions for all the musical performance videos. 

Answers. As each question template has certain answer, 

we ask annotators to directly choose the correct one from 

the answer vocabulary. And we also use the above labeling 

system to collect answers. In this process, we set up the 

following rules when answering questions: 1) when one an- 

swer that is selected for the same question twice, it will be 

considered as the correct answer; 2) when the answer to a 

question is confirmed, it will not be seen by the subsequent 

annotators. In addition, the unreasonable question is anno- 

tated as invalid, and the corresponding video will be asked 

one new question again. 

3.4. Statistical Analysis 

Our MUSIC-AVQA dataset contains 45,867 question- 

answer pairs, distributed in 9,288 videos for over 150 hours.
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Figure 3. The proposed audio-visual question answering model. The model takes pre-trained CNNs to extract audio and visual features 

and uses a LSTM to obtain a question embedding. We associate specific visual locations with the input sounds to perform spatial grounding, 

based on which audio and visual features of key timestamps are further highlighted via question query for temporal grounding. Finally, 

multimodal fusion is exploited to integrate audio, visual, and question information for predicting the answer to the input question. 

Figure 2(a-d) provides the statistical analysis of our dataset. 

In this dataset, real videos and synthetic videos accounted 

for 79.9% and 20.1%, respectively. Real videos are com- 

posed of 14.8% solo videos, 71.7% duet videos and 13.5% 

other ensemble videos. Audio-visual questions makes up 

the majority of all QA pairs and consists of five types with 

a balanced share. Fig. 2(f) shows that all QA pairs types are 

divided into 3 modal scenarios, which contain 9 question 

types and 33 question templates. Finally, as an open-ended 

problem of our AVQA tasks, all 42 kinds of answers consti- 

tute a set for selection. For training and evaluation, we ran- 

domly split the dataset into training, validation, and testing 

sets with 32,087, 4,595, and 9,185 QA pairs, respectively. 

More details about the dataset construction and statistical 

analysis are in the Supp. Materials . 

4. Method 

To solve the AVQA problem, we propose a spatio- 

temporal grounding model to achieve scene understand- 

ing and reasoning over audio and visual modalities. An 

overview of the proposed framework is illustrated in Fig. 3. 

4.1. Representations for Different Modalities 

Given an input video sequence containing both visual 

and audio tracks, we first divide it into T non-overlapping 

visual and audio segment pairs { Vt 

, At 

}T 

t =1, where each 

segment is 1 s long. The question sentence Q is tokenized 

into N individual words { qn 

}N 

n =1. 

Audio Representation. We encode each audio segment 

At 

into a feature vector f 

t 

a 

using a pre-trained VGGish 

model [16], which is VGG-like 2D CNN network, employ- 

ing over transformed audio spectrograms. The audio repre- 

sentation is extracted offline and the model is not fine-tuned. 

Visual Representation. We sample a fixed number of 

frames for all video segments. We then apply pre-trained 

ResNet-18 [18] on video frames to extract visual feature 

map f 

t 

v ,m 

for each video segment Vt. The used pre-trained 

ResNet-18 model is not fine-tuned. 

Question Representation. For an asked question Q = 

{ qn 

}N 

n =1, a LSTM is used to process projected word em- 

beddings { fq 

}N 

n =1 

and encode the question into a feature 

vector fq 

using the last hidden state. The question encoder 

is trained from the scratch. 

4.2. Spatial Grounding Module 

We consider that the sound and the location of its vi- 

sual source usually reflects the spatial association between 

audio and visual modality, the spatial grounding module, 

which performs attention-based sound source localization, 

is therefore introduced to decompose the complex scenar- 

ios into concrete audio-visual association. Specifically, for 

each video segment Vt, the visual feature map f 

t 

v ,m 

and 

the corresponding audio feature f 

t 

a 

∈ RC compose the 

matched pair. Then we randomly sample another visual 

segment and get its visual feature map, which composes the 

non-matched pair with the audio feature f 

t 

a 

. For each pair, 

we can compute the sound-related visual features, f 

t 

v ,s, as:

 

f 

t 

v ,s 

= f 

t 

v ,m 

· σ (( f 

t 

a)
⊺ · f 

t 

v ,m) , (1)



 

where σ is the softmax and ( · )⊺ represents the transpose op- 

erator. To prevent possible visual information loss, we aver- 

agely pool the visual feature map f 

t 

v ,m, obtaining the global 

visual feature f 

t 

v ,g . The two visual feature is fused as the vi- 

sual representation: f 

t 

v 

= FC ( Tanh [ f 

t 

v ,g 

, f 

t 

v ,s]) , where FC 

represents fully-connected layers. Then, the visual and the 

audio representation combines to predict the audio-visual 

pairs are matched or not:

 

ˆ y 

t = σ ( FC ( Concat [ f 

t 

a 

, f 

t 

v])) , (2)

 

Ls 

= Lce( y 

match , ˆ y 

t) , (3)

 

where y 

match indicates whether the audio and visual fea- 

ture come from the matched pair, i.e., y 

match = 1 when f 

t 

v 

and f 

t 

a 

is the matched pair, otherwise y 

match = 0 . Lce 

is 

the cross-entropy loss. It should be noted that non-matched 

pairs are only used in the spatial grounding module, i.e., f 

t 

v 

and f 

t 

a 

is always the matched pair in other modules. 

4.3. Temporal Grounding Module 

To highlight the key timestamps that are closely asso- 

ciated to the question, we propose a temporal grounding 

module, which is designed for attending critical temporal 

segments among the changing audio-visual scenes and cap- 

turing question-aware audio and visual embeddings. Con- 

cretely, given a fq 

and audio-visual features { f 

t 

a 

, f 

t 

v 

}T 

t =1, 

the temporal grounding module will learn to aggregate 

question-aware audio and visual features. The grounded 

audio feature f̄a 

and visual feature f̄v 

can be computed as:

 

f̄a 

= 

⊺∑ 

t =1 

w 

a 

t 

f 

t 

a 

= σ ( 

fqf 

⊺ 

a

 

√

 

d 

) f a 

, (4) 

f̄v 

= 

⊺∑ 

t =1 

w 

v 

t 

f 

t 

v 

= σ ( 

fqf 

⊺ 

v

 

√

 

d 

) f v 

, (5)

 

where f a 

= [ f1 

a ; ... ; f 

T 

a 

] and f v 

= [ f1 

v ; ... ; f 

T 

v 

] ; d is a scal- 

ing factor with the same size as the feature dimension. Ob- 

viously, the model will assign large weights to audio and 

visual segments, which are more relevant to the asked ques- 

tion. Hence, the question grounded audio/visual contextual 

embeddings are more capable of predicting correct answers. 

4.4. Multimodal Fusion and Answer Prediciton 

Different modalities can contribute to correctly answer 

questions. To combine the features: f̄a, f̄v , and fq , we 

introduce a simple multimodal fusion network. It firstly 

concatenates audio and visual features and then uses a 

linear layer with a tanh activation to generate an audio- 

visual embedding fav . Finally, we integrate audio-visual 

and question features with employing an element-wise 

multiplication operation. Concretely, we can formulate 

the fusion function as: e = fav 

◦ fq , where fav 

= 

FC ( Tanh ( Concat [f̄a 

, f̄v])) . 

To achieve audio-visual video question answering, we 

predict the answer for a given question from the joint multi- 

modal embedding e . It can be formulated as an open-ended 

task, which aims to choose one correct word as the an- 

swer from a pre-defined answer vocabulary. We utilize a 

linear layer and softmax function to output a probabilities 

p ∈ RC for candidate answers. With the predicted prob- 

ability vector and the corresponding ground-truth label y , 

we can optimize our network using a cross-entropy loss: 

Lq a 

= − 

∑C 

c =1 

yc 

l og ( pc) . During testing, we can select 

the predicted answer by ˆ c = arg maxc( p ) . 

5. Experiments 

5.1. Experiments Setting 

Implementation Details. The sampling rates of sounds and 

video frames are 16 k H z and 1 f ps , respectively. For each 

video, we divide it into non-overlapping segments of the 

same length with 1 frame and generate a 512-D feature vec- 

tor for each visual segment. For each 1 s -long audio seg- 

ment, we use a linear layer to process the extracted 128-D 

VGGish feature into a 512-D feature vector. The dimen- 

sion of the word embedding is set to 512. In experiments, 

due to the limitation of computing resources, we sampled 

the videos by taking 1 s every 6 s . Batch size and number of 

epochs are 64 and 30, respectively. The initial learning rate 

is 1 e -4 and will drop by multiplying 0.1 every 10 epochs. 

Our networks is trained with the Adam optimizer. 

Training Strategy. We use a two-stage training strategy, 

training the spatial grounding module first with Ls. Later, 

based on stage one, using L = Lq a 

+ λ · Ls 

to train for 

AVQA task, where λ is 0.5 in our experiment. 

Baselines. To validate our method on the released MUSIC- 

AVQA dataset, we compare it with recent audio QA meth- 

ods: FCNLSTM [9] and CONVLSTM [9], visual QA 

methods: GRU [3], BiLSTM Attn [65], HCAttn [32] and 

MCAN [55], video QA methods: PSAC [30], HME [8] 

and HCRN [28], AVQA method: AVSD [36] and Pano- 

AVQA [56]. To investigate different modalities and mod- 

ules, we compare several sub-models, as shown in Tab. 3. 

Evaluation. We use answer prediction accuracy as the met- 

ric and evaluate model performance on answering different 

types of questions. The answer vocabulary consists of 42 

possible answers (22 objects, 12 counting choices, 6 loca- 

tion types, and yes/no) to different types of questions in the 

dataset. For training, we use one single model to handle all 

questions without training separated models for each type. 

So the accuracy with random choice is 1/42 ≈ 2.4%. Addi- 

tionally, all models are trained on our AVQA dataset using 

the same features for a fair comparison. 

5.2. Results and analysis 

To study different input modalities and validate the ef- 

fectiveness of the proposed model, we conduct extensive



 

Task

 

Method

 

Audio Question

 

Visual Question

 

Audio-Visual Question

 

All

 

Counting Comparative Avg.

 

Counting Location Avg.

 

Existential Location Counting Comparative Temporal Avg.

 

Avg.

 

AudioQA

 

FCNLSTM [9]

 

70.45 66.22 68.88

 

63.89 46.74 55.21

 

82.01

 

46.28 59.34 62.15 47.33 60.06

 

60.34

 

CONVLSTM [9]

 

74.07 68.89 72.15

 

67.47 54.56 60.94

 

82.91 50.81 63.03 60.27 51.58 62.24

 

63.65

 

VisualQA

 

GRU [3]

 

72.21 66.89 70.24

 

67.72 70.11 68.93

 

81.71 59.44

 

62.64 61.88 60.07 65.18

 

67.07

 

BiLSTM Attn [65]

 

70.35 47.92 62.05

 

64.64 64.33 64.48

 

78.39 45.85 56.91 53.09 49.76 57.10

 

59.92

 

HCAttn [32]

 

70.25 54.91 64.57

 

64.05 66.37 65.22

 

79.10 49.51 59.97 55.25 56.43 60.19

 

62.30

 

MCAN [55]

 

77.50

 

55.24 69.25

 

71.56 70.93 71.24

 

80.40 54.48 64.91

 

57.22 47.57 61.58

 

65.49

 

VideoQA

 

PSAC [30]

 

75.64 66.06 72.09

 

68.64 69.79 69.22

 

77.59 55.02 63.42 61.17 59.47 63.52

 

66.54

 

HME [8]

 

74.76 63.56 70.61

 

67.97 69.46 68.76

 

80.30 53.18 63.19 62..69 59.83 64.05

 

66.45

 

HCRN [28]

 

68.59 50.92 62.05

 

64.39 61.81 63.08

 

54.47 41.53 53.38 52.11 47.69 50.26

 

55.73

 

AVQA

 

AVSD [36]

 

72.41 61.90 68.52

 

67.39 74.19 70.83

 

81.61 58.79 63.89 61.52 61.41 65.49

 

67.44

 

Pano-AVQA [56]

 

74.36 64.56 70.73

 

69.39

 

75.65

 

72.56

 

81.21 59.33 64.91

 

64.22

 

63.23

 

66.64

 

68.93

 

Our method

 

78.18 67.05

 

74.06

 

71.56 76.38 74.00

 

81.81 64.51 70.80 66.01 63.23 69.54

 

71.52

 

Table 2. AVQA results of different methods on the test set of MUSIC-AVQA. The top-2 results are highlighted.

 

Method

 

A Question V Question A-V Question All

 

Q

 

65.19 44.42 55.15 54.09 

A+Q

 

67.78 62.75 63.86 64.26 

V+Q

 

68.76 67.28 63.23 65.28 

AV+Q

 

70.67 69.72 65.84 67.72 

AV+Q+TG

 

73.01 73.18 68.02 70.27 

AV+Q+TG+SG

 

74.06 74.00 69.54 71.52

 

* TG: Temporal Grounding; SG: Spatial Grounding.

 

Table 3. Ablation study on input modalities and the proposed mod- 

ules. We observe that leveraging audio, visual, and question infor- 

mation can boost AVQA task. 

ablations of our model (see Tab. 3) and compare to recent 

QA approaches (see Tab. 2). 

Question-only baseline. Table 3 shows the results of 

the ablation study. The model Q, which only use ques- 

tions as inputs, achieves accuracy of 54.90, since some 

type of questions can be answered fully based on com- 

mon sense. This a common phenomenon that exists in 

the QA dataset [3, 56, 57]. For example, on Pano-AVQA 

dataset [56], the model Q even outperforms AVSD [36] 

method. However, the model Q is limited in handling com- 

plicate QA tasks ( e.g ., Location and Temporal ). After mod- 

eling the spatial and temporal association across modalities, 

the model performance gains a considerable improvement. 

Multisensory perception boosts QA. As shown in Tab. 3, 

introducing A or V both facilitates the model performance. 

Also, the model V+Q adding visual features is overall bet- 

ter than the Q and the A+Q, which indicates that the visual 

modality is a strong signal for QA. It is not surprising to 

see that the V+Q is better than A+Q for visual question an- 

swering, but we also observe that V+Q outperforms A+Q 

for audio question answering. It is intuitive that recognizing 

sounds from complicated sound mixtures are very challeng- 

ing, especially when two sounds are in the same category, 

while it is easy for visual modality since different sources 

are visually isolated. As shown in Fig. 4(a) shows, there are 

two sounding cellos in the video, which can be seen in vi- 

sual effortlessly, while the sound of two trumpets is hard to 

recognized. What’s more, obviously, when combining au- 

dio and visual modalities, the AV+Q model performance is 

much better than the A+Q and V+Q models, indicating that 

multisensory perception helps to boost QA performance. 

Spatio-temporal grounding analysis. With the spatio- 

temporal grounding module, our audio-visual model 

achieves the overall best performance among the compared 

methods. In Fig. 4, we provide several visualized spatial 

grounding results. The heatmap indicates the location of 

sounding source. Through the spatial grounding results, 

the sounding objects are visually captured, which can fa- 

cilitate the spatial reasoning. For example, in the case of 

Fig. 4(c), the spatial grounding module offers the informa- 

tion that the sounding object in each timestamp. Also, the 

temporal grounding module aggregate the information of all 

timestamps based on the question. According to the key- 

word: last , the model can infer that at the last of the video, 

the instrument located on the right is playing. Combined 

with temporal grounding module, the model can capture the 

sounding objects in each timestamp and have a comprehen- 

sive understanding of the whole video. 

Comparison to recent QA methods. Table 2 shows results 

of recent QA methods on our MUSIC-AVQA dataset. The 

results firstly demonstrate that all AVQA methods outper- 

form A-, V- and VideoQA methods, which indicates that 

AVQA task can be boosted through multisensory percep- 

tion. Secondly, our method achieves considerable improve- 

ment on most audio and visual questions. For the audio- 

visual question that desires spatial and temporal reason- 

ing, our method is clearly superior over other methods on 

most question types, especially on answering the Count- 

ing and Location questions. Although the Pano-AVQA [56] 

attempted to model audio-visual scenes, our methods ex- 

plicitly constructs the association between audio and visual 

modalities and temporally aggregate both features, solv- 

ing the spatio-temporal reasoning problem more effectively. 

Moreover, the results confirm the potential of our dataset as 

a testbed for audio-visual scene understanding. 

6. Discussion 

In this work, we investigate the audio-visual question an- 

swering problem, which aims to answer questions regarding 

videos by fully exploiting multisensory content. To facili- 

tate this task, we build a large-scale MUSIC-AVQA dataset, 

which consists of 45,867 question-answer pairs spanning 

over audio-visual modalities and different question types. 

We also propose a spatio-temporal grounding model to ex-



0.1562 0.1392 0.1148 0.0613 0.1748 
0.2185 0.2693 0.0049 0.0411 0.0429 

(e) Q: Is the first sound coming from the right instrument?   A: yes

(a) Q: How many sounding cello in the video?  A: two

0.0056 0.2831 0.0538 0.1243 0.3722
0.0083 0.0638 0.1110 0.3016 0.0433

(c) Q: Where is the last sounding instrument?  A: right

0.1704 0.0575 0.1429 0.2247 0.2075 
0.0534 0.2933 0.0187 0.1353 0.2770 

(b) Q: How many types of musical instruments sound in the video?  A: two

0.1223 0.1086 0.0855 0.1293 0.1439 
0.1609 0.0807 0.0237 0.0601 0.0333 

(d) Q: Where is the first sounding instrument?  A: left

Note: visual attention score over time audio attention score over time

0.0260 0.0430 0.1796 0.0117 0.0547
0.1786 0.0183 0.0291 0.1070 0.0446

0.2406 0.0239 0.0229 0.0024 0.0402 
0.0676 0.1469 0.0120 0.0145 0.0359 

(f) Q: What is the left instrument of the first sounding instrument?  A: erhu

 

Figure 4. Visualized spatio-temporal grounding results. Based on the grounding results of our method, the sounding area and key 

timestamps are accordingly highlighted in spatial and temporal perspectives (a-e), respectively, which indicates that our method can model 

the spatio-temporal association over different modalities well, facilitating the scene understanding and reasoning. Besides, the subfigure 

(f) shows one failure case predicted by our method, where the complex scenario with multiple sounding and silent objects makes it difficult 

to correlate individual objects with mixed sound, leading to a wrong answer for the given question. 

plore the fine-grained scene understanding and reasoning. 

Our results show that all of different modalities can con- 

tribute to addressing the AVQA task and our model out- 

performs recent QA approaches, especially when equipped 

with our proposed modules. We believe that our dataset can 

be a useful testbed for evaluating fine-grained audio-visual 

scene understanding and spatio-temporal reasoning, and has 

a potential to inspire more people to explore the field. 

Limitation. Although we have achieved considerable im- 

provement, the AVQA task still has a wide scope for explo- 

ration. Firstly, the scene of the current dataset is more lim- 

ited to the musical scenario, while audio-visual interaction 

exists in more daily situations. We will explore audio-visual 

reasoning tasks in more general scenarios in the subsequent 

study. Our model simply decomposes the complex scenar- 

ios into concrete audio-visual association. However, some 

visual objects or sound sources, which are not relevant to 

the questions, are involved in the encoded unimodal em- 

beddings, might introducing learning noises and make solv- 

ing QA tasks challenging, as the shown failure example in 

Fig. 4(f). To alleviate the problem, we can parse each video 

into individual objects and isolated sounds and then adap- 

tively leverage question-related audio and visual elements 

for more accurate question answering. Further, to facilitate 

temporal reasoning, we proposed to highlight the key times- 

tamps that are close to the question. However, such module 

lacks explicit temporal modeling between audio and visual 

modality. More advanced model that could bridge the tem- 

poral association across modalities is expected to boost per- 

formance further. Though the scenarios are somewhat lim- 

ited, we think this is the first step of audio-visual reasoning 

and we believe this paper will be a good start in this field. 

Broader impacts. The released MUSIC-AVQA dataset is 

curated, which perhaps owns potential correlation between 

instrument and geographical area. This issue warrants fur- 

ther research and consideration. 
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